COURSE SPECIFICATIONS (DATA STRUCTURE) **Programme(s) on which the course is given**CS, IT, IS and OR **Major or Minor element of programs** Major **Department offering the program**Computer Science **Department offering the course**Computer Science **Academic year / Level** 2nd Year / 1st Semester #### A- Basic Information | Title | Data Structure | | Code | CS241 | | | |--------|----------------|---|----------|-------|-----------|---| | Credit | Lecture | 3 | Tutorial | 3 | Practical | - | | Hours | Total | | | 6 | | | #### **B- Professional Information** #### 1- Overall aims of course - Understand the concepts of data representation - Design different algorithms for data structure - Understand arrays, stacks and queues - Understand linked lists and trees. ## 2- Intended learning outcomes of course (ILOs) #### 2a- Knowledge and understanding a2 Understand and apply a wide range of principles and tools available to the software engineer, such as design methodologies, choice of algorithm, language, software libraries and user interface technique. ## 2b- Intellectual skills - **b1** Solve a wide range of problems related to the analysis, design and construction of computer systems - **b2** Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology. - **b6** Be creative in the solution of problems and in the development of designs. # 2c- Professional and practical skills **c5** Design, write and debug computer programs in appropriate languages. ## 2d- General and transferable skills - **d1** Display an integrated approach to the deployment of communication skills. - **d2** Use IT skills and display mature computer literacy. - **d3** Work effectively with and for others. - **d9** Choose and formulate suitable strategies to accomplish well-defined goals. ## 3- Contents | Topic | No. of
Hours | Lecture | Tutorial
/Practical | |--|-----------------|---------|------------------------| | 1 Introduction and Overview | 6 | 3 | 3 | | 2 Arrays, Record and Pointers Linear Arrays Control Structures. Sub-algorithms. | 6 | 3 | 3 | | Linear Arrays in Memory. 3 Basic Operations Done on Linear Arrays Traversing Linear Arrays. Inserting and Deleting. Sorting Linear Search | 12 | 6 | 6 | | Binary Search 4 Multidimensional Arrays Two Dimensional (2D) Arrays. Representation 2D Arrays in Memory. Pointer Arrays. Record Structures. Parallel Arrays. | 6 | 3 | 3 | | 5 Stacks and Queues Stacks. Array Representation of Stacks. The Stack Abstract Data Type. Queues and Priority Queues. Array Representation of Priority Queues. The Queue Abstract Data Type. Multiple Stacks and Queues | 12 | 6 | 6 | | 6 Linked Lists Introduction Linked Lists in Memory Basic Operations on Linked Lists Traversing A Linked List | 6 | 3 | 3 | | 7 Linked Lists Operation • Introduction | 12 | 6 | 6 | | Searching A Linked List Memory Allocation Insertion into A Linked Lists Deletion from A Linked Lists Header Linked Lists | | | | |---|----|----|----| | 8 A Linked Lists Abstract Data Types Introduction. Pointers. Singly Linked Lists. Case Studies. Doubly Linked Lists | 6 | 3 | 3 | | 9 Mathematical Functions and Trees Introduction Performance Analysis Complexity of Algorithms Performance Measurement Binary Trees Representing Binary Trees in Memory Traversing Binary Trees Traversal Algorithms Using Stacks Path Lengths General Trees | 12 | 6 | 6 | | 10 Trees Abstract Data Structure Introduction and Terminology. The Abstract Data Type of Binary Trees. Binary Tree Representations. Binary Tree Operations | 6 | 3 | 3 | | Total sum | 84 | 42 | 42 | ## 4- Teaching and learning methods - **5.a.1** Reports, assignments, exercises, and final written exam to assess knowledge and understanding. - **5.a.2** Regular oral, practical and written quizzes to assess intellectual skills. - **5.a.3** Practical projects, final practical and oral exams to assess professional skills. - **5.a.4** Reports, assignments, and discussions to assess general and transferable skills. #### 5- Student assessment methods #### 5-a Methods - **5.a.1** Reports, assignments, exercises, and final written exam to assess knowledge and understanding. - **5.a.2** Regular oral, practical and written quizzes to assess intellectual skills. - **5.a.3** Practical projects, final practical and oral exams to assess professional skills. - **5.a.4** Reports, assignments, and discussions to assess general and transferable skills. #### 5-b Assessment schedule | Assessment 1 | 7 th week. | |--------------|---| | Assessment 2 | 16 th week (Oral and | | | practical) | | Assessment 3 | 17 th -18 th weeks (final | | | written exam | ## 5-c Weighting of assessments | Mid-term examination | 10% | |------------------------|------| | Final-term examination | 70% | | Oral examination. | 5% | | Practical examination | 10% | | Semester work | 5% | | Other types of | - | | assessment | | | Total | 100% | #### 6- List of references #### 6-a Course notes There are lectures notes prepared in the form of a book given by the Lecturer ## 6-b Essential books (text books) [1] Robert Lafore, Data Structures and Algorithms, SAMS,2000 #### 6-c Recommended books Aron M. Tennen-Baum & others, Data Structure using C, Prentice Hall, 1992 ## 6-d Periodicals, Web sites, ... etc IEEE transactions on computers software #### 7- Facilities required for teaching and learning - Datashow, screen, and laptop computer. - PC lab connected to the Internet - Lab equipped with programming languages. ### **Course Coordinator:** Dr. Waiel Shawkey **Head of Department:** Prof. Dr. Nabil Abd-El-Wahid Ismail **Date:** / /